Regulation of the Ca(2+)-independent phospholipase A2 in liver mitochondria by changes in the energetic state.
نویسندگان
چکیده
The effect of electron transport chain redox status on activity of the mitochondrial Ca(2+)-independent phospholipase A2 (iPLA2) has been examined. When oxidizing NAD-linked substrates, the enzyme is not active unless deenergization occurs. Uncoupler, rotenone, antimycin A, and cyanide are equally effective at upregulating the enzyme, while oligomycin is ineffective. Thenoyltrifluoroacetone causes deenergization and activates the enzyme, but only if succinate is the respiratory substrate. These findings show that the mitochondrial iPLA2 responds to the energetic state overall, rather than to the redox status of individual electron transport chain complexes. With NAD-linked substrates, and using rotenone to deenergize, iPLA2 activation can be reversed by adding succinate to reestablish a membrane potential. For this purpose, ascorbate plus N,N,N'N'-tetramethyl-phenylenediamine can be used instead of succinate and is equally effective. With succinate as substrate, the membrane potential can be reduced in a graded and stable fashion by adding increasing concentrations of malonate, which is a competitive inhibitor of succinate utilization. A partial and stable activation of the iPLA2 accompanies partial deenergization. These findings suggest that in addition to the several functions that have been proposed, the mitochondrial iPLA2 may help to coordinate local capillary blood flow with changing energy demands.
منابع مشابه
Genetic ablation of calcium-independent phospholipase A(2)γ (iPLA(2)γ) attenuates calcium-induced opening of the mitochondrial permeability transition pore and resultant cytochrome c release.
Herein, we demonstrate that calcium-independent phospholipase A(2)γ (iPLA(2)γ) is a critical mechanistic participant in the calcium-induced opening of the mitochondrial permeability transition pore (mPTP). Liver mitochondria from iPLA(2)γ(-/-) mice were markedly resistant to calcium-induced swelling in the presence or absence of phosphate in comparison with wild-type littermates. Furthermore, t...
متن کاملExendin-4 Protects Mitochondria from Reactive Oxygen Species Induced Apoptosis in Pancreatic Beta Cells
OBJECTIVE Mitochondrial oxidative stress is the basis for pancreatic β-cell apoptosis and a common pathway for numerous types of damage, including glucotoxicity and lipotoxicity. We cultivated mice pancreatic β-cell tumor Min6 cell lines in vitro and observed pancreatic β-cell apoptosis and changes in mitochondrial function before and after the addition of Exendin-4. Based on these observations...
متن کاملIdentification of calcium-independent phospholipase A2 in mitochondria and its role in mitochondrial oxidative stress
Kinsey GR, McHowat J, Beckett CS, Schnellmann RG. Identification of calcium-independent phospholipase A2 in mitochondria and its role in mitochondrial oxidative stress. Am J Physiol Renal Physiol 292: F853–F860, 2007. First published October 17, 2006; doi:10.1152/ajprenal.00318.2006.—Oxidant-induced lipid peroxidation and cell death mediate pathologies associated with ischemiareperfusion and in...
متن کاملActivation of mitochondrial calcium-independent phospholipase A2γ (iPLA2γ) by divalent cations mediating arachidonate release and production of downstream eicosanoids.
Calcium-independent phospholipase A(2)γ (iPLA(2)γ) (PNPLA8) is the predominant phospholipase activity in mammalian mitochondria. However, the chemical mechanisms that regulate its activity are unknown. Here, we utilize iPLA(2)γ gain of function and loss of function genetic models to demonstrate the robust activation of iPLA(2)γ in murine myocardial mitochondria by Ca(2+) or Mg(2+) ions. Calcium...
متن کاملActivation of liver mitochondrial phospholipase A2 by superoxide.
Mitochondrial damage is one of the prominent features of cell injury during oxidative stress and altered mitochondrial lipids may contribute to this damage. Lipid changes were observed when liver mitochondria were exposed to superoxide generating systems. Phosphatidylcholine and phosphatidylethanolamine contents were decreased with simultaneous formation of lysophospholipids when exposed to sup...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 55 5 شماره
صفحات -
تاریخ انتشار 2014